Oh snap! Lecture videos might not load due to connection issues to source servers. Sorry for inconvenience.

Lec 30 - Physics 111: Nuclear Magnetic Resonance Part-2 Pulsed NMR

Physics 111: Nuclear Magnetic Resonance Part-2 Pulsed NMR Physics 111 Advanced Laboratory. Larry Wald This video part 2 accompanies the Nuclear Magnetic Resonance Experiment, providing students with an introduction to the theory, apparatus, and procedures. In the NMR experiment, nuclear dipoles (the samples) are subjected to a static magnetic field of about 4000 gauss as well as a time-varying radio-frequency magnetic field perpendicular to the static field. The static field causes Zeeman-effect splitting between sub-states, and the radio frequency field is tuned to the Larmor frequency so that it induces transitions between the sub-states. The resonance condition is observed using the Bloch two-coil induction technique. You will observe proton and fluorine nuclei. You will learn techniques of lock-in detection and signal averaging. A second part of this experiment uses a pulsed radiofrequency field rather than a continuous-wave (CW) field. Signals are detected immediately after the pulsed excitation stops. The observable effects are comparable to the free vibration or ringing of a resonant cavity on an atomic scale. This is the basis of Magnetic Resonance Imaging (MRI) in the medical field today. http://advancedlab.org

Video is embedded from external source so download is not available.

Channels: Physics (General)

Tags: Physics 111: Nuclear Magnetic Resonance Part-2 Pulsed NMR

Uploaded by: ( Send Message ) on 19-09-2012. Dnatube suggest users to have interest in drug testing, mesothelioma, insurance, medical lawyers.

Duration: 21m 38s

No content is added to this lecture.

Go to course:

This video is a part of a lecture series from of berkeley

Lecture list for this course

Lec 1 - Physics 111: Atomic Physics (ATM) Part 1. Balmer Series

Lec 2 - Physics 111: Atomic Physics (ATM) Part 2. Zeeman Effect

Lec 3 - Physics 111: Beta Ray Spectroscopy (BRA)

Lec 4 - Physics 111: Brownian Motion in Cells (BMC)

Lec 5 - Physics 111: Instrumentation Section Lab Equipment (BSC)

Lec 6 - Physics 111: Bubble Chamber (BBC)

Lec 7 - Physics 111: Carbon Dioxide Laser (CO2)

Lec 8 - Physics 111: Compton Scattering (COM)

Lec 9 - Physics 111: Gamma Ray Spectroscopy (GMA)

Lec 10 - Physics 111: Hall Effect In A Plasma (HAL)

Lec 11 - Physics 111: Holography (HOL)

Lec 12 - Physics 111: Introduction to Error Analysis

Lec 13 - Physics 111: Josephson Junction Effect (JOS)

Lec 14 - Physics 111: Radiation and Laboratory Safety

Lec 15 - Physics 111: Laser Safety

Lec 16 - Physics 111: Atomic Physics (ATM) Theory Lecture ONLY

Lec 17 - Physics 111: Energy Levels Lecture Part 1

Lec 18 - Physics 111: Energy Levels Lecture Part 2

Lec 19 - Physics 111 Light Sources and Detectors Lecture

Lec 20 - Physics 111: Optical Instruments Lecture

Lec 21 - Physics 111: Energy Transitions Lecture Series

Lec 22 - Physics 111: Laser Induced Fluorescence and Raman Scattering (LIF)

Lec 23 - Physics 111: Low Light Signal Measurements (LLS)

Lec 24 - Physics 111: Non-Linear Spectroscopy and Magneto-Optics Part 1 (MNO)

Lec 25 - Physics 111: Non-Linear Spectroscopy and Magneto-Optics Part 2 (MNO)

Lec 26 - Physics 111: Atom Trapping (MOT)

Lec 27 - Physics 111: Muon Lifetime (MUO)

Lec 28 - Physics 111: Non-Linear Dynamics and Chaos (NLD)

Lec 29 - Physics 111: Nuclear Magnetic Resonance (NMR) Part-1 Continuous Wave

Lec 31 - Physics 111: Optical Pumping (OPT)

Lec 32 - Physics 111: How to do an Oral Report

Lec 33 - Physics 111: Optical Trapping (OTZ)

Lec 34 - Physics 111: Rutherford Scattering (RUT)

Lec 35 - Physics 111: Hall Effect In A Semiconductor

Lec 36 - Physics 111: Soldering Technique

Lec 37 - Physics 111: X-Ray Crystallography

We promote science. You can find science videos on drug testing, mesothelioma, medical insurance and medical lawyers

Dnatube: Sciencific and Medical video site.