3372 views

Lec 6 - Physics 111: Bubble Chamber (BBC)

Physics 111: Bubble Chamber (BBC) Physics 111 Advanced Laboratory. Professor Sumner Davis This video used to accompany the Bubble Chamber Experiment, providing students with an introduction to the theory, apparatus, and procedures. This experiment is no longer used in the course. This experiment provides an introduction to elementary particle physics. Interactions and decays of a beam of K- mesons are studied in photographs taken in three stereoscopic views of the Alvarez 72-inch bubble chamber at the old Berkeley Bevatron. The total interaction cross-section, mean lifetime, and a branching ratio are measured. Interactions observed are inelastic charge exchange, hyperon production, 4-prong interactions, and several decay processes. A second set of photographs portrays the interaction of high energy photons with protons in the bubble chamber. This is an exploratory and qualitative experiment in which you observe many particle tracks and learn to identify and classify various interactions and decays, and determine their relative frequencies of occurrence. It's like a treasure hunt with all the excitement of finding something new and very different from ordinary experiments. It is an "observe and tell" experiment. There are no charts or plots or extended mathematical computations required. http://advancedlab.org

Video is embedded from external source so embedding is not available.

Video is embedded from external source so download is not available.

Channels: Physics (General)

Tags: Physics 111: Bubble Chamber (BBC)

Uploaded by: ( Send Message ) on 19-09-2012.

Duration: 12m 34s

No content is added to this lecture.

Go to course:

This video is a part of a lecture series from of berkeley

Lecture list for this course

Lec 1 - Physics 111: Atomic Physics (ATM) Part 1. Balmer Series

Lec 2 - Physics 111: Atomic Physics (ATM) Part 2. Zeeman Effect

Lec 3 - Physics 111: Beta Ray Spectroscopy (BRA)

Lec 4 - Physics 111: Brownian Motion in Cells (BMC)

Lec 5 - Physics 111: Instrumentation Section Lab Equipment (BSC)

Lec 7 - Physics 111: Carbon Dioxide Laser (CO2)

Lec 8 - Physics 111: Compton Scattering (COM)

Lec 9 - Physics 111: Gamma Ray Spectroscopy (GMA)

Lec 10 - Physics 111: Hall Effect In A Plasma (HAL)

Lec 11 - Physics 111: Holography (HOL)

Lec 12 - Physics 111: Introduction to Error Analysis

Lec 13 - Physics 111: Josephson Junction Effect (JOS)

Lec 14 - Physics 111: Radiation and Laboratory Safety

Lec 15 - Physics 111: Laser Safety

Lec 16 - Physics 111: Atomic Physics (ATM) Theory Lecture ONLY

Lec 17 - Physics 111: Energy Levels Lecture Part 1

Lec 18 - Physics 111: Energy Levels Lecture Part 2

Lec 19 - Physics 111 Light Sources and Detectors Lecture

Lec 20 - Physics 111: Optical Instruments Lecture

Lec 21 - Physics 111: Energy Transitions Lecture Series

Lec 22 - Physics 111: Laser Induced Fluorescence and Raman Scattering (LIF)

Lec 23 - Physics 111: Low Light Signal Measurements (LLS)

Lec 24 - Physics 111: Non-Linear Spectroscopy and Magneto-Optics Part 1 (MNO)

Lec 25 - Physics 111: Non-Linear Spectroscopy and Magneto-Optics Part 2 (MNO)

Lec 26 - Physics 111: Atom Trapping (MOT)

Lec 27 - Physics 111: Muon Lifetime (MUO)

Lec 28 - Physics 111: Non-Linear Dynamics and Chaos (NLD)

Lec 29 - Physics 111: Nuclear Magnetic Resonance (NMR) Part-1 Continuous Wave

Lec 30 - Physics 111: Nuclear Magnetic Resonance Part-2 Pulsed NMR

Lec 31 - Physics 111: Optical Pumping (OPT)

Lec 32 - Physics 111: How to do an Oral Report

Lec 33 - Physics 111: Optical Trapping (OTZ)

Lec 34 - Physics 111: Rutherford Scattering (RUT)

Lec 35 - Physics 111: Hall Effect In A Semiconductor

Lec 36 - Physics 111: Soldering Technique

Lec 37 - Physics 111: X-Ray Crystallography