Oh snap! Lecture videos might not load due to connection issues to source servers. Sorry for inconvenience.
1733 views

Lec 18 - Amide, Carboxylic Acid and Alkyl Lithium

"Lec 18 - Amide, Carboxylic Acid and Alkyl Lithium" Freshman Organic Chemistry (CHEM 125) This lecture completes the first half of the semester by analyzing three functional groups in terms of the interaction of localized atomic or pairwise orbitals. Many key properties of biological polypeptides derive from the mixing of such localized orbitals that we associate with "resonance" of the amide group. The acidity of carboxylic acids and the aggregation of methyl lithium into solvated tetramers can be understood in analogous terms. More amazing than the panoply of modern experimental and theoretical tools is that their results would not have surprised traditional organic chemists who already had developed an understanding of organic structure with much cruder tools. The next quarter of the semester is aimed at understanding how our scientific predecessors developed the structural model and nomenclature of organic chemistry that we still use. 00:00 - Chapter 1. Resonance of the Amide Group 14:16 - Chapter 2. Acidity of Carboxylic Acids 20:46 - Chapter 3. The Aggregation of Alkyl Lithium 41:21 - Chapter 4. Why Wouldn't Past Organic Chemists Be Surprised? Complete course materials are available at the Open Yale Courses website: http://open.yale.edu/courses This course was recorded in Fall 2008.

Video is embedded from external source so download is not available.

Channels: Chemistry (General)

Tags: Amides carboxylic acids peptides proteins dipole resonance

Uploaded by: ( Send Message ) on 05-09-2012. Dnatube suggest users to have interest in drug testing, mesothelioma, insurance, medical lawyers.

Duration: 51m 21s

No content is added to this lecture.

Go to course:

This video is a part of a lecture series from of Yale

Lecture list for this course

Lec 1 - How Do You Know?

Lec 2 - Force Laws, Lewis Structures and Resonance

Lec 3 - Double Minima, Earnshaw's Theorem and Plum-Puddings

Lec 4 - Coping with Smallness and Scanning Probe Microscopy

Lec 5 - X-Ray Diffraction

Lec 6 - Seeing Bonds by Electron Difference Density

Lec 7 - Quantum Mechanical Kinetic Energy

Lec 8 - One-Dimensional Wave Functions

Lec 9 - Chladni Figures and One-Electron Atoms

Lec 10 - Reality and the Orbital Approximation

Lec 11 - Orbital Correction and Plum-Pudding Molecules

Lec 12 - Overlap and Atom-Pair Bonds

Lec 13 - Overlap and Energy-Match

Lec 14 - Checking Hybridization Theory with XH_3

Lec 15 - Chemical Reactivity: SOMO, HOMO, and LUMO

Lec 16 - Recognizing Functional Groups

Lec 17 - Reaction Analogies and Carbonyl Reactivity

Lec 19 - Oxygen and the Chemical Revolution (Beginning to 1789)

Lec 20 - Rise of the Atomic Theory (1790-1805)

Lec 21 - Berzelius to Liebig and Wöhler (1805-1832)

Lec 22 - Radical and Type Theories (1832-1850)

Lec 23 - Valence Theory and Constitutional Structure (1858)

Lec 24 - Determining Chemical Structure by Isomer Counting (1869)

Lec 25 - Models in 3D Space (1869-1877); Optical Isomers

Lec 26 - Van't Hoff's Tetrahedral Carbon and Chirality

Lec 27 - Communicating Molecular Structure in Diagrams and Words

Lec 28 - Stereochemical Nomenclature; Racemization and Resolution

Lec 29 - Preparing Single Enantiomers and the Mechanism of Optical Rotation

Lec 30 - Esomeprazole as an Example of Drug Testing and Usage

Lec 31 - Preparing Single Enantiomers and Conformational Energy

Lec 32 - Stereotopicity and Baeyer Strain Theory

Lec 33 - Conformational Energy and Molecular Mechanics

Lec 34 - Sharpless Oxidation Catalysts and the Conformation of Cycloalkanes

Lec 35 - Understanding Molecular Structure and Energy through Standard Bonds

Lec 36 - Bond Energies, the Boltzmann Factor and Entropy

Lec Last - Potential Energy Surfaces, Transition State Theory and Reaction Mechanism

Dnatube: Sciencific and Medical video site.