2714 views

Lec 27 - Communicating Molecular Structure in Diagrams and Words

"Lec 27 - Communicating Molecular Structure in Diagrams and Words" Freshman Organic Chemistry (CHEM 125) It is important that chemists agree on notation and nomenclature in order to communicate molecular constitution and configuration. It is best when a diagram is as faithful as possible to the 3-dimensional shape of a molecule, but the conventional Fischer projection, which has been indispensable in understanding sugar configurations for over a century, involves highly distorted bonds. Ambiguity in diagrams or words has led to multibillion-dollar patent disputes involving popular drugs. International agreements provide descriptive, unambiguous, unique, systematic "IUPAC" names that are reasonably convenient for most organic molecules of modest molecular weight. 00:00 - Chapter 1. The Development of the Fischer Projections 16:27 - Chapter 2. Diastereomers and Enantiomers in van't Hoff's Brochure 23:14 - Chapter 3. Notation Ambiguities and Multibillion Dollar Pharmaceutical Disputes 39:26 - Chapter 4. The IUPAC and the Standardization of Molecular Nomenclature Complete course materials are available at the Open Yale Courses website: http://open.yale.edu/courses This course was recorded in Fall 2008.

Video is embedded from external source so embedding is not available.

Video is embedded from external source so download is not available.

No content is added to this lecture.

Go to course:

This video is a part of a lecture series from of Yale

Lecture list for this course

Lec 1 - How Do You Know?

Lec 2 - Force Laws, Lewis Structures and Resonance

Lec 3 - Double Minima, Earnshaw's Theorem and Plum-Puddings

Lec 4 - Coping with Smallness and Scanning Probe Microscopy

Lec 5 - X-Ray Diffraction

Lec 6 - Seeing Bonds by Electron Difference Density

Lec 7 - Quantum Mechanical Kinetic Energy

Lec 8 - One-Dimensional Wave Functions

Lec 9 - Chladni Figures and One-Electron Atoms

Lec 10 - Reality and the Orbital Approximation

Lec 11 - Orbital Correction and Plum-Pudding Molecules

Lec 12 - Overlap and Atom-Pair Bonds

Lec 13 - Overlap and Energy-Match

Lec 14 - Checking Hybridization Theory with XH_3

Lec 15 - Chemical Reactivity: SOMO, HOMO, and LUMO

Lec 16 - Recognizing Functional Groups

Lec 17 - Reaction Analogies and Carbonyl Reactivity

Lec 18 - Amide, Carboxylic Acid and Alkyl Lithium

Lec 19 - Oxygen and the Chemical Revolution (Beginning to 1789)

Lec 20 - Rise of the Atomic Theory (1790-1805)

Lec 21 - Berzelius to Liebig and Wöhler (1805-1832)

Lec 22 - Radical and Type Theories (1832-1850)

Lec 23 - Valence Theory and Constitutional Structure (1858)

Lec 24 - Determining Chemical Structure by Isomer Counting (1869)

Lec 25 - Models in 3D Space (1869-1877); Optical Isomers

Lec 26 - Van't Hoff's Tetrahedral Carbon and Chirality

Lec 28 - Stereochemical Nomenclature; Racemization and Resolution

Lec 29 - Preparing Single Enantiomers and the Mechanism of Optical Rotation

Lec 30 - Esomeprazole as an Example of Drug Testing and Usage

Lec 31 - Preparing Single Enantiomers and Conformational Energy

Lec 32 - Stereotopicity and Baeyer Strain Theory

Lec 33 - Conformational Energy and Molecular Mechanics

Lec 34 - Sharpless Oxidation Catalysts and the Conformation of Cycloalkanes

Lec 35 - Understanding Molecular Structure and Energy through Standard Bonds

Lec 36 - Bond Energies, the Boltzmann Factor and Entropy

Lec Last - Potential Energy Surfaces, Transition State Theory and Reaction Mechanism