"Lec 14 - Quantifying Uncertainty and Risk" Financial Theory (ECON 251) Until now, the models we've used in this course have focused on the case where everyone can perfectly forecast future economic conditions. Clearly, to understand financial markets, we have to incorporate uncertainty into these models. The first half of this lecture continues reviewing the key statistical concepts that we'll need to be able to think seriously about uncertainty, including expectation, variance, and covariance. We apply these concepts to show how diversification can reduce risk exposure. Next we show how expectations can be iterated through time to rapidly compute conditional expectations: if you think the Yankees have a 60% chance of winning any game against the Dodgers, what are the odds the Yankees will win a seven game series once they are up 2 games to 1? Finally we allow the interest rate, the most important variable in the economy according to Irving Fisher, to be uncertain. We ask whether interest rate uncertainty tends to make a dollar in the distant future more valuable or less valuable. 00:00 - Chapter 1. Expectation, Variance, and Covariance 19:06 - Chapter 2. Diversification and Risk Exposure 33:54 - Chapter 3. Conditional Expectation 53:39 - Chapter 4. Uncertainty in Interest Rates Complete course materials are available at the Open Yale Courses website: http://open.yale.edu/courses This course was recorded in Fall 2009.

Video is embedded from external source so embedding is not available.

Video is embedded from external source so download is not available.

Channels: Finance

Tags: Lec 14 - Quantifying Uncertainty and Risk

Uploaded by: yalefinancialth ( Send Message ) on 12-09-2012.

Duration: 64m 10s

No content is added to this lecture.

This video is a part of a lecture series from of Yale