3823 views

Lec 1 - Newton Leibniz and Usain Bolt

Newton Leibniz and Usain Bolt Why we study differential calculus

Video is embedded from external source so embedding is not available.

Video is embedded from external source so download is not available.

Channels: Mathematics

Tags: Newton Leibniz and Usain Bolt

Uploaded by: ( Send Message ) on 05-09-2012.

Duration: 9m 7s

Here is the next lecture for this course

No content is added to this lecture.

Go to course:

This video is a part of a lecture series from of khan

Lecture list for this course

Lec 2 - Introduction to Limits (HD)

Lec 3 - Introduction to Limits

Lec 4 - Limit Examples (part 1)

Lec 5 - Limit Examples (part 2)

Lec 6 - Limit Examples (part3)

Lec 7 - Limit Examples w/ brain malfunction on first prob (part 4)

Lec 8 - Squeeze Theorem

Lec 9 - Proof: lim (sin x)/x

Lec 10 - More Limits

Lec 11 - Epsilon Delta Limit Definition 1

Lec 12 - Epsilon Delta Limit Definition 2

Lec 13 - Calculus: Derivatives 1 (new HD version)

Lec 14 - Calculus: Derivatives 2 (new HD version)

Lec 15 - Calculus: Derivatives 2.5 (new HD version)

Lec 16 - Derivative Intuition Module

Lec 17 - Calculus: Derivatives 1

Lec 18 - Calculus: Derivatives 2

Lec 19 - Calculus: Derivatives 3

Lec 20 - The Chain Rule

Lec 21 - Chain Rule Examples

Lec 22 - Even More Chain Rule

Lec 23 - Product Rule

Lec 24 - Quotient Rule

Lec 25 - Derivatives (part 9)

Lec 26 - Proof: d/dx(x^n)

Lec 27 - Proof: d/dx(sqrt(x))

Lec 28 - Proof: d/dx(ln x) = 1/x

Lec 29 - Proof: d/dx(e^x) = e^x

Lec 30 - Proofs of Derivatives of Ln(x) and e^x

Lec 31 - Extreme Derivative Word Problem (advanced)

Lec 32 - Implicit Differentiation

Lec 33 - Implicit Differentiation (part 2)

Lec 34 - More implicit differentiation

Lec 35 - More chain rule and implicit differentiation intuition

Lec 36 - Trig Implicit Differentiation Example

Lec 37 - Calculus: Derivative of x^(x^x)

Lec 38 - Introduction to L'Hopital's Rule

Lec 39 - L'Hopital's Rule Example 1

Lec 40 - L'Hopital's Rule Example 2

Lec 41 - L'Hopital's Rule Example 3

Lec 42 - Maxima Minima Slope Intuition

Lec 43 - Inflection Points and Concavity Intuition

Lec 44 - Monotonicity Theorem

Lec 45 - Calculus: Maximum and minimum values on an interval

Lec 46 - Calculus: Graphing Using Derivatives

Lec 47 - Calculus Graphing with Derivatives Example

Lec 48 - Graphing with Calculus

Lec 49 - Optimization with Calculus 1

Lec 50 - Optimization with Calculus 2

Lec 51 - Optimization with Calculus 3

Lec 52 - Optimization Example 4

Lec 53 - Introduction to rate-of-change problems

Lec 54 - Equation of a tangent line

Lec 55 - Rates-of-change (part 2)

Lec 56 - Ladder rate-of-change problem

Lec 57 - Mean Value Theorem

Lec 58 - The Indefinite Integral or Anti-derivative

Lec 59 - Indefinite integrals (part II)

Lec 60 - Indefinite Integration (part III)

Lec 61 - Indefinite Integration (part IV)

Lec 62 - Indefinite Integration (part V)

Lec 63 - Integration by Parts (part 6 of Indefinite Integration)

Lec 64 - Indefinite Integration (part 7)

Lec 65 - Another u-subsitution example

Lec 66 - Introduction to definite integrals

Lec 67 - Definite integrals (part II)

Lec 68 - Definite Integrals (area under a curve) (part III)

Lec 69 - Definite Integrals (part 4)

Lec 70 - Definite Integrals (part 5)

Lec 71 - Definite integral with substitution

Lec 72 - Integrals: Trig Substitution 1

Lec 73 - Integrals: Trig Substitution 2

Lec 74 - Integrals: Trig Substitution 3 (long problem)

Lec 75 - Periodic Definite Integral

Lec 76 - Simple Differential Equations

Lec 77 - Solid of Revolution (part 1)

Lec 78 - Solid of Revolution (part 2)

Lec 79 - Solid of Revolution (part 3)

Lec 80 - Solid of Revolution (part 4)

Lec 81 - Solid of Revolution (part 5)

Lec 82 - Solid of Revolution (part 6)

Lec 83 - Solid of Revolution (part 7)

Lec 84 - Solid of Revolution (part 8)

Lec 85 - Sequences and Series (part 1)

Lec 86 - Sequences and series (part 2)

Lec 87 - Maclauren and Taylor Series Intuition

Lec 88 - Cosine Taylor Series at 0 (Maclaurin)

Lec 89 - Sine Taylor Series at 0 (Maclaurin)

Lec 90 - Taylor Series at 0 (Maclaurin) for e to the x

Lec 91 - Euler's Formula and Euler's Identity

Lec 92 - Visualizing Taylor Series Approximations

Lec 93 - Generalized Taylor Series Approximation

Lec 94 - Visualizing Taylor Series for e^x

Lec 95 - Polynomial approximation of functions (part 1)

Lec 96 - Polynomial approximation of functions (part 2)

Lec 97 - Approximating functions with polynomials (part 3)

Lec 98 - Polynomial approximation of functions (part 4)

Lec 99 - Polynomial approximations of functions (part 5)

Lec 100 - Polynomial approximation of functions (part 6)

Lec 101 - Polynomial approximation of functions (part 7)