2723 views

Lec 9 - Chladni Figures and One-Electron Atoms

"Lec 9 - Chladni Figures and One-Electron Atoms" Freshman Organic Chemistry (CHEM 125) After showing how a double-minimum potential generates one-dimensional bonding, Professor McBride moves on to multi-dimensional wave functions. Solving Schrödinger's three-dimensional differential equation might have been daunting, but it was not, because the necessary formulas had been worked out more than a century earlier in connection with acoustics. Acoustical "Chladni" figures show how nodal patterns relate to frequencies. The analogy is pursued by studying the form of wave functions for "hydrogen-like" one-electron atoms. Removing normalizing constants from the formulas for familiar orbitals reveals the underlying simplicity of their shapes. 00:00 - Chapter 1. 1-D Bonding from Double-Minimum Potentials 09:03 - Chapter 2. Addressing Multi-Dimensional Problems: Chladni's Acoustics 22:52 - Chapter 3. Applying Chladni's Nodal Patterns to the Form of One-Electron Atoms 32:05 - Chapter 4. Removing Normalizing Constants to Understand Orbital Shapes Complete course materials are available at the Open Yale Courses website: http://open.yale.edu/courses This course was recorded in Fall 2008.

Video is embedded from external source so embedding is not available.

Video is embedded from external source so download is not available.

No content is added to this lecture.

Go to course:

This video is a part of a lecture series from of Yale

Lecture list for this course

Lec 1 - How Do You Know?

Lec 2 - Force Laws, Lewis Structures and Resonance

Lec 3 - Double Minima, Earnshaw's Theorem and Plum-Puddings

Lec 4 - Coping with Smallness and Scanning Probe Microscopy

Lec 5 - X-Ray Diffraction

Lec 6 - Seeing Bonds by Electron Difference Density

Lec 7 - Quantum Mechanical Kinetic Energy

Lec 8 - One-Dimensional Wave Functions

Lec 10 - Reality and the Orbital Approximation

Lec 11 - Orbital Correction and Plum-Pudding Molecules

Lec 12 - Overlap and Atom-Pair Bonds

Lec 13 - Overlap and Energy-Match

Lec 14 - Checking Hybridization Theory with XH_3

Lec 15 - Chemical Reactivity: SOMO, HOMO, and LUMO

Lec 16 - Recognizing Functional Groups

Lec 17 - Reaction Analogies and Carbonyl Reactivity

Lec 18 - Amide, Carboxylic Acid and Alkyl Lithium

Lec 19 - Oxygen and the Chemical Revolution (Beginning to 1789)

Lec 20 - Rise of the Atomic Theory (1790-1805)

Lec 21 - Berzelius to Liebig and Wöhler (1805-1832)

Lec 22 - Radical and Type Theories (1832-1850)

Lec 23 - Valence Theory and Constitutional Structure (1858)

Lec 24 - Determining Chemical Structure by Isomer Counting (1869)

Lec 25 - Models in 3D Space (1869-1877); Optical Isomers

Lec 26 - Van't Hoff's Tetrahedral Carbon and Chirality

Lec 27 - Communicating Molecular Structure in Diagrams and Words

Lec 28 - Stereochemical Nomenclature; Racemization and Resolution

Lec 29 - Preparing Single Enantiomers and the Mechanism of Optical Rotation

Lec 30 - Esomeprazole as an Example of Drug Testing and Usage

Lec 31 - Preparing Single Enantiomers and Conformational Energy

Lec 32 - Stereotopicity and Baeyer Strain Theory

Lec 33 - Conformational Energy and Molecular Mechanics

Lec 34 - Sharpless Oxidation Catalysts and the Conformation of Cycloalkanes

Lec 35 - Understanding Molecular Structure and Energy through Standard Bonds

Lec 36 - Bond Energies, the Boltzmann Factor and Entropy

Lec Last - Potential Energy Surfaces, Transition State Theory and Reaction Mechanism