"Lec 9 - Chladni Figures and One-Electron Atoms" Freshman Organic Chemistry (CHEM 125) After showing how a double-minimum potential generates one-dimensional bonding, Professor McBride moves on to multi-dimensional wave functions. Solving Schrödinger's three-dimensional differential equation might have been daunting, but it was not, because the necessary formulas had been worked out more than a century earlier in connection with acoustics. Acoustical "Chladni" figures show how nodal patterns relate to frequencies. The analogy is pursued by studying the form of wave functions for "hydrogen-like" one-electron atoms. Removing normalizing constants from the formulas for familiar orbitals reveals the underlying simplicity of their shapes. 00:00 - Chapter 1. 1-D Bonding from Double-Minimum Potentials 09:03 - Chapter 2. Addressing Multi-Dimensional Problems: Chladni's Acoustics 22:52 - Chapter 3. Applying Chladni's Nodal Patterns to the Form of One-Electron Atoms 32:05 - Chapter 4. Removing Normalizing Constants to Understand Orbital Shapes Complete course materials are available at the Open Yale Courses website: http://open.yale.edu/courses This course was recorded in Fall 2008.

Video is embedded from external source so embedding is not available.

Video is embedded from external source so download is not available.

Channels: Chemistry (General)

Tags: Tunneling wave function Chladni figures double well potential

Uploaded by: yalefreshorganic ( Send Message ) on 05-09-2012.

Duration: 49m 36s

No content is added to this lecture.

This video is a part of a lecture series from of Yale