Lec 9 - Chladni Figures and One-Electron Atoms

"Lec 9 - Chladni Figures and One-Electron Atoms" Freshman Organic Chemistry (CHEM 125) After showing how a double-minimum potential generates one-dimensional bonding, Professor McBride moves on to multi-dimensional wave functions. Solving Schrödinger's three-dimensional differential equation might have been daunting, but it was not, because the necessary formulas had been worked out more than a century earlier in connection with acoustics. Acoustical "Chladni" figures show how nodal patterns relate to frequencies. The analogy is pursued by studying the form of wave functions for "hydrogen-like" one-electron atoms. Removing normalizing constants from the formulas for familiar orbitals reveals the underlying simplicity of their shapes. 00:00 - Chapter 1. 1-D Bonding from Double-Minimum Potentials 09:03 - Chapter 2. Addressing Multi-Dimensional Problems: Chladni's Acoustics 22:52 - Chapter 3. Applying Chladni's Nodal Patterns to the Form of One-Electron Atoms 32:05 - Chapter 4. Removing Normalizing Constants to Understand Orbital Shapes Complete course materials are available at the Open Yale Courses website: http://open.yale.edu/courses This course was recorded in Fall 2008.

Video is embedded from external source so download is not available.

Channels: Chemistry (General)

Tags: Tunneling wave function Chladni figures double well potential

Uploaded by: ( Send Message ) on 05-09-2012. Dnatube suggest users to have interest in drug testing, mesothelioma, insurance, medical lawyers.

Duration: 49m 36s

No content is added to this lecture.

Go to course:

This video is a part of a lecture series from of Yale

Lecture list for this course

Lec 1 - How Do You Know?

Lec 2 - Force Laws, Lewis Structures and Resonance

Lec 3 - Double Minima, Earnshaw's Theorem and Plum-Puddings

Lec 4 - Coping with Smallness and Scanning Probe Microscopy

Lec 5 - X-Ray Diffraction

Lec 6 - Seeing Bonds by Electron Difference Density

Lec 7 - Quantum Mechanical Kinetic Energy

Lec 8 - One-Dimensional Wave Functions

Lec 10 - Reality and the Orbital Approximation

Lec 11 - Orbital Correction and Plum-Pudding Molecules

Lec 12 - Overlap and Atom-Pair Bonds

Lec 13 - Overlap and Energy-Match

Lec 14 - Checking Hybridization Theory with XH_3

Lec 15 - Chemical Reactivity: SOMO, HOMO, and LUMO

Lec 16 - Recognizing Functional Groups

Lec 17 - Reaction Analogies and Carbonyl Reactivity

Lec 18 - Amide, Carboxylic Acid and Alkyl Lithium

Lec 19 - Oxygen and the Chemical Revolution (Beginning to 1789)

Lec 20 - Rise of the Atomic Theory (1790-1805)

Lec 21 - Berzelius to Liebig and Wöhler (1805-1832)

Lec 22 - Radical and Type Theories (1832-1850)

Lec 23 - Valence Theory and Constitutional Structure (1858)

Lec 24 - Determining Chemical Structure by Isomer Counting (1869)

Lec 25 - Models in 3D Space (1869-1877); Optical Isomers

Lec 26 - Van't Hoff's Tetrahedral Carbon and Chirality

Lec 27 - Communicating Molecular Structure in Diagrams and Words

Lec 28 - Stereochemical Nomenclature; Racemization and Resolution

Lec 29 - Preparing Single Enantiomers and the Mechanism of Optical Rotation

Lec 30 - Esomeprazole as an Example of Drug Testing and Usage

Lec 31 - Preparing Single Enantiomers and Conformational Energy

Lec 32 - Stereotopicity and Baeyer Strain Theory

Lec 33 - Conformational Energy and Molecular Mechanics

Lec 34 - Sharpless Oxidation Catalysts and the Conformation of Cycloalkanes

Lec 35 - Understanding Molecular Structure and Energy through Standard Bonds

Lec 36 - Bond Energies, the Boltzmann Factor and Entropy

Lec Last - Potential Energy Surfaces, Transition State Theory and Reaction Mechanism

We promote science. You can find science videos on drug testing, mesothelioma, medical insurance and medical lawyers

Dnatube: Sciencific and Medical video site.